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In nonideal thermodynamic engines the efficiency is well below the Carnot efficiency
h512T1 /T2 . In 1975 an expression for the efficiency of a nonideal Carnot engine with heat losses
was derived, yieldingh512AT1 /T2 at maximum power output. In this paper, a corresponding
relation is obtained for more general nonideal Carnot engines. If there are friction losses only, the
result ish5(12T1 /T2)/2. If friction and heat losses are both included, the efficiency at maximum
power depends on a dimensionless parameterl* that takes into account the effects of friction and
heat conduction, and can vary between the values obtained for friction and heat losses separately,
(12T1 /T2)/2,hpmax,12AT1 /T2. A general relation between efficiency and power output is
established, and it is shown that an appreciable gain in efficiency can be obtained at a power output
only slightly below its maximum. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

In Carnot engines, a working gas receives heatQ2 at an
upper temperatureT2 from an external heat reservoir at tem
peratureT2 , thereby expanding isothermally from its initia
volume V1 to a larger volumeV2 ~step 1!. Then the gas is
adiabatically expanded toV3 and cooled to a lower tempera
tureT1 ~step 2!. At this temperature it is compressed isoth
mally to V4 while rejecting heatQ1 to an external heat sink
at temperatureT1 ~step 3!. Finally, it is further compressed
adiabatically until it reassumes its initial volumeV1 and tem-
peratureT2 ~step 4!. Because the work that must be e
pended in the two compression steps~3 and 4! is less than
the work gained in the two expansion steps~1 and 2!, the net
work done during a full cycle is positive and is given b
W5Q22Q1 . The fraction h5W/Q2512Q1 /Q2 of the
heatQ2 that is transformed into work defines the efficien
of the Carnot engine. According to the first and second la
of thermodynamics, the maximum efficiency of an eng
that transfers heat from a heat source at temperatureT2 to a
heat sink at temperatureT1 is given by

h ideal512T1 /T2 . ~1!

This value is achieved only by a quasi-static process
which the working gas passes infinitely slowly through
continuous sequence of equilibrium states.

The last condition shows that Carnot engines are ideal
tions from which all real thermodynamic engines will mo
or less deviate. In this paper more realistic thermodyna
engines, called nonideal Carnot engines, are considered
which the rate of the various processes is finite, but wh
otherwise resemble Carnot engines as closely as poss
That is, the working gas is~1! isothermally and~2! adiabati-
cally expanded, and~3! isothermally and~4! adiabatically
compressed as in the Carnot cycle. Thereby, the gas pa
through almost-equilibrium-states to which a uniform pre
sure and a uniform temperature can be ascribed in good
proximation.

In order for the transformation of heat into work by
Carnot-like engine to proceed at reasonable speed, the
exchange between the heat reservoirs and the working
cannot be quasi-static. A temperature gradient is needed,
1143 Am. J. Phys.70 ~11!, November 2002 http://ojps.aip.or
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is, the temperatureT̃ of the working gas must be below tha

of the heat source (T2) when it receives heat,T̃2,T2 , and
above that of the heat sink (T1) when it rejects heat,

T̃1.T1 . The larger the temperature gradient, the faster
heat is transmitted, the shorter the duration of a full cyc
and the less workW done in one cycle. The average powerP
of the engine isW/t, wheret is the period of the cycle. In
the range between the maximum work done at infinite per
with P50 and the vanishing work done for the shortest p
sible t with P50, there exists a temperature gradient
which the power output assumes a maximum. For the e
ciency at maximum power output, Curzon and Ahlborn d
rived the temperature dependence1

hh,pmax512AT1

T2
. ~2!

~The subscripth indicates that only heat losses are taken in
account.! This value is appreciably below the efficiency of a
ideal Carnot engine given in Eq.~1!. Equations~1! and ~2!
were applied in Ref. 1 to a coal-fired steam plant worki
betweenT25565 °C andT1525 °C, yieldingh ideal50.64
and hh,pmax50.40. The latter is above the observed ef
ciency ofh50.36. In this paper it is shown that the inclusio
of friction losses leads to an efficiency that at maximu
power output is smaller than the efficiency of Eq.~2!, and
thus the calculated efficiency may come closer to the e
ciencies observed in real engines.

The influence of friction is similar to that of heat condu
tion. For infinite period the friction losses are negligib
small, butP50. With increasing speed of the process a
simultaneously decreasing efficiency, the friction losses
come larger until they eat up the entire work done such t
againP50. In between, there is a process velocity at wh
the power output becomes maximal while the efficiency
below its maximum.

In Sec. II a formula for the efficiency at maximum pow
output is derived for the case of friction losses only. In S
III losses due to friction and heat conduction will be treat
simultaneously.
1143g/ajp/ © 2002 American Association of Physics Teachers
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II. CARNOT PROCESS WITH FRICTION LOSSES
ONLY

A nonideal model engine illustrating the effects to be co
sidered is shown in Fig. 1. In the center there is a holl
cylinder filled with a working gas that is completely close
on its right-hand side. At the left-hand side the rod of
movable piston extends through a wall closing the cylin
to the left. The piston can be pressed into the gas transmi
work to it, and it can be pushed by the gas to the left tra
mitting work to the outside. The cylinder with the workin
gas is placed in a larger hollow cylinder that can alternat
be filled with the~gaseous or liquid! storage material of a
heat sink~temperatureT1) or a heat source~temperatureT2

.T1). It is assumed here that the heat transfer to and fr
the working gas can proceed at an arbitrary speed with
any temperature gradients, so there are no heat losses.

Without friction the efficiency of the engine would be th
ideal efficiency of Eq.~1!. During the motion of the piston
work is lost due to friction. For a friction force with linea
velocity dependence, the total force acting on the piston

F5pA2 f ẋ, ~3!

wherex is the displacement of the piston.ẋ(t) is its velocity,
p is the pressure exerted on the piston by the working gaA
is the piston area, andf is the friction coefficient. During a
displacementdx, with v5 ẋ and dV5A dx, the work per-
formed by the piston is

dW5F dx5~pA2 f ẋ! dx5p dV2 f v2~ t ! dt, ~4!

and the work done during a full cycle is

W5 R p dV2 f R v2~ t ! dt. ~5!

We may assume that, for the proper choice of the frict
coefficient, f v2(t) is an averaged rate for all friction losse
including others than the ones caused by friction between
piston and the cylinder wall. According to the first law
thermodynamics, for a complete cycle,

05 R dU5 R dQ2 R p dV, ~6!

and hence

R p dV5 R dQ5Q22Q1 . ~7!

Fig. 1. Model of a nonideal Carnot engine with friction.
1144 Am. J. Phys., Vol. 70, No. 11, November 2002
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If we substitute Eq.~7! into Eq. ~5!, we obtain

W5Q22Q12 f R v2 dt. ~8!

The time dependence of the functionv(t) is assumed to be
self-similar, that is,

v~ t !5v* g~ t/t!, ~9!

where g(t/t) is a periodic function oft/t with period 1;
g(t/t) is considered to be a shape function valid for all fr
quencies 1/t and characteristic of a given engine, andv* is a
measure of the speed of the process. The distance covere
the piston during one cycle is~see Fig. 1!

2D5 R uv~ t !u dt5v* R ug~ t/t!u dt5v* t ug~ t/t!u,

~10!

where the bar denotes the time average over one cycl
periodt, i.e.

ug~ t/t!u5
1

t E
0

t

ug~ t/t!u dt5E
0

1

ug~y!u dy. ~11!

Furthermore,

R v2~ t ! dt5v* 2 R g2~ t/t! dt5v* 2t g2~ t/t!. ~12!

If we substitute forv* from Eq. ~10!, we obtain

R v2~ t ! dt5
g2~ t/t!

~ ug~ t/t!u!2

4D2

t
. ~13!

For the Carnot-like engine under consideration, the ratio

d[
g2~ t/t!

~ ug~ t/t!u!2
~14!

is a fixed parameter. From Eqs.~8!, ~13!, and~14!, we obtain

W5Q22Q12
4 f dD2

t
. ~15!

According to Eq.~15!, the powerP5W/t of the engine is

P5
Q22Q1

t
2

4 f dD2

t2
, ~16!

and its efficiency is

h5
W

Q2
5

Q22Q1

Q2
2

4 f dD2

tQ2
. ~17!

For given values ofQ1 andQ2 the powerP is a function of
t only. Between the shortest possible cycle period with n
negativeP and t5`, P has a maximum, the location o
which is determined by

dP~t!

dt
52

Q22Q1

t2
1

8 f dD2

t3
50, ~18!

and is given by

t5
8 f dD2

Q22Q1
. ~19!

The maximum power obtained for this period is
1144E. Rebhan
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Pf ,max5
~Q22Q1!2

16f dD2
5

Q2
2h ideal

2

16f dD2
, ~20!

whereh ideal512Q1 /Q2 was used.~The subscriptf indicates
that only friction losses are taken into account.! For the pe-
riod in Eq.~19! corresponding to maximum power, the use
Eq. ~17! with Eq. ~1! gives

h f ,pmax5
1

2 S 12
Q1

Q2
D5

h ideal

2
. ~21!

Like the Curzon–Ahlborn efficiency of Eq.~2!, it is indepen-
dent of all machine parameters, and, as expected, it is sm
than the ideal efficiency of Eq.~1!.

From Eqs.~16! and~17!, a general relation betweenh and
P can be derived. For this purpose, we first solve Eq.~16! for
t, yielding

t5
Q22Q1

2P S 16A12
16f dD2P

~Q22Q1!2 D . ~22!

We then use (Q22Q1)/Q25h ideal and Eq.~20! to obtain

t5
Q2h ideal

2P S 16A12
P

Pf ,max
D . ~23!

Becauseh5W/Q25Pt/Q2 , it follows that

h f5
h ideal

2 S 16A12
P

Pf ,max
D . ~24!

The functionh f(P/Pf ,max) has two branches because, a
cording to Eq.~16!, every power outputPÞPf ,max can be
achieved for a longer and a shorter period, correspondin
a higher and a lower efficiency, respectively. Figure 5 sho
this function for the value 0.2 of the ratio

r5
T1

T2
. ~25!

III. CARNOT PROCESS WITH COMBINED
FRICTION AND HEAT LOSSES

In a nonideal Carnot engine with heat losses only,
working gas does not receive the heatQ2 at the temperature
T2 of the heat source, but at a temperature somewhat be
this value on the isotherm

T̃25T22DT2

with

DT2.0. ~26!

The heatQ1 is not rejected from the gas at the temperat
T1 of the heat sink, but at a temperature somewhat abov
the isotherm

T̃15T11DT1

with

DT1.0. ~27!

Figure 2 shows apV diagram of the nonideal process und
consideration. On the two isothermsdU5dQ2pdV50, and
hence
1145 Am. J. Phys., Vol. 70, No. 11, November 2002
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Q15E
4

3

p dV5RT̃1E
4

3dV

V
5R ~T11DT1!ln

Ṽ3

Ṽ4

, ~28!

and

Q25RT̃2E
1

2dV

V
5R ~T22DT2!ln

Ṽ2

Ṽ1

. ~29!

It will now be assumed that the Carnot process undergone
the working gas between the temperaturesT̃1 and T̃2 is an
ideal one. From this assumption and the second law of t
modynamics, it follows that

Q1

T̃1

5
Q2

T̃2

. ~30!

Consequently,

Ṽ2

Ṽ1

5
Ṽ3

Ṽ4

, ~31!

according to Eqs.~28! and ~29!. For the heat transfer be
tween the heat reservoirs and the working gas, Fourier’s
of heat conduction leads toQ̇(t);DT, whereQ̇ is the rate of
heat transfer. Equivalently,

Q15at1 DT1 , Q25bt2 DT2 , ~32!

wheret1 andt2 are the total times needed for the heat tra
fer, and where 1/a and 1/b are the thermal resistances b
tween the working gas and the heat sink or the heat so
and the working gas, respectively. The engine can be c
structed in such a way thatt1 andt2 are fixed fractions of the
periodt. That is,t15c1t andt25c2t, with the consequence
that t11t25(c11c2)t or, from Eq.~32!,

t5j~ t11t2!5jS Q1

aDT1
1

Q2

bDT2
D , ~33!

with j51/(c11c2). In the following, we shall use the ab
breviations

Fig. 2. pV diagram for a nonideal Carnot process with heat losses.

working gas receives the heatQ2 on an isothermT̃25constant somewhat
below the temperatureT2 of the upper reservoir and rejects the heat on

isotherm T̃15constant somewhat above the temperatureT1 of the lower
reservoir.A23 and A41 are adiabatic curves. The workW done during one
cycle is given by the dashed area in a nonideal process and by the sh
area in an ideal process.
1145E. Rebhan



n

nt
r

s

m

n-

a-

ia-
x5
DT1

T1
, y5

DT2

T2
, ~34!

m5
a

b
, P05

aT2

j
, ~35!

and

N5mx1y1~12m!xy. ~36!

If we use Eqs.~26!, ~27!, ~30!, and ~34!–~36!, the result
for t in Eq. ~33! can be rewritten as

t5
Q2

P0
F 11x

x~12y!
1

m

y G5
Q2

P0

N

xy~12y!
. ~37!

With this notation the efficiencyhh5(Q22Q1)/Q1 of an
engine with heat losses only is

hh5
Q22Q1

Q2
512

T11DT1

T22DT2
512

11x

12y
r, ~38!

where Eqs.~28!, ~29!, and ~31! have been used. We the
combine Eqs.~35!–~37! with the relation Ph5hhQ2 /t
which follows from Eq.~17! andPh5W/t, and obtain

Ph5
~12r2rx2y!xy

N
P0 . ~39!

If, in addition to heat losses, friction losses are taken i
account, Eqs.~16! and~17! must be employed for the powe
and the efficiency, respectively. The periodt is now deter-
mined by heat conduction and is given by Eq.~37!. With heat
losses included, Eqs.~17!, ~29!, ~31!, and ~35!–~37! lead to
the result

h512
11x

12y
r2

l xy

~12y!N
, ~40!

wherel is given by

l5
4a f dD2

jR2T2ln2~Ṽ2 /Ṽ1!
. ~41!

Because the power ishQ2 /t, we find using Eqs.~37! and
~40! that

P5F ~12r2rx2y!xy

N
2

l x2y2

N2 GP0 . ~42!

~No subscript will be used forh andP for the case of com-
bined friction and heat losses.!

Except for Ṽ2 /Ṽ1 , all the quantities inl are fixed ma-
chine parameters. For a given engine, the turning point
the piston and its stroke lengthD are fixed~see Fig. 1!. This
condition is equivalent to the condition that the minimu
volume Ṽ1 and the maximum volumeṼ3 have fixed values
V1 andV3 ,

Ṽ15V1 , Ṽ35V3 . ~43!
1146 Am. J. Phys., Vol. 70, No. 11, November 2002
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On the other hand, the intermediate volumesṼ2 and Ṽ4 de-

pend on the temperaturesT̃2 and T̃1, respectively. Because

Ṽ2 is related to Ṽ35V3 by an adiabatic curve,TVg21

5constant, whereg is the ratio of the specific heats at co

stant pressure and constant volume, we haveT̃2Ṽ2
g21

5T̃1V3
g21, and

Ṽ2

Ṽ1

5
V3

V1
S T̃1

T̃2
D 1/(g21)

5
V3

V1
S 11x

12y
r D 1/(g21)

. ~44!

Furthermore, the volumesV1 and V3 can be expressed in
terms of the piston areaA and the lengthsD1 andD shown in
Fig. 1, that is,V15AD1 , V35A(D11D), and

V3

V1
511d

with

d5
D

D1
. ~45!

If we substitute Eq.~45! in Eq. ~44! and Eq.~44! in Eq. ~41!,
we finally obtain

l5
4a f dD2

jR2T2F ln~11d!1
1

g21
lnr1

1

g21 S ln
11x

12yD G2 .

~46!

To obtain analytical results, we shall use the approxim
tion

l'l* [
4a f dD2

jR2T2F ln~11d!1
1

g21
lnrG2 . ~47!

This approximation is justified for

ln~11d!1
1

g21
ln r@

1

g21
ln

11x

12y
, ~48!

which is satisfied for large values ofd and/org and/or for
small values ofx and y. ~Large values ofg lead to steep
adiabatic curves. It is clear from Fig. 2 that for vertical ad
batic curves, the relationl'l* becomes exact becauseṼ2

5Ṽ35V3 in this case.!
The exact results forh andP are
1146E. Rebhan



h512
11x

12y
r2

l* xy

~12y!NF11
1

g21 S ln
11x

12yD Y S ln~11d!1
1

g21
lnr D G2 , ~49!

P5F ~12r2rx2y!xy

N
2

l* x2y2

N2F11
1

g21 S ln
11x

12yD Y S ln~11d!1
1

g21
lnr D G2GP0 , ~50!
r.

m

a

as
op

se

l b

r

is

e

l-

es
h at
se-
wherel* , given by Eq.~47!, is a dimensionless paramete
Instead of these results, we shall use Eqs.~40! and~42!, and
treatl'l* as a fixed parameter. Note that the two extre
cases, heat losses only (l50), and friction only (l→`),
are not affected by our approximation, and remain ex
within the framework of the present model.

As mentioned previously, between very slow and very f
cycle speed, there must be a point of maximum power
eration. To determine it, the derivatives]P/]x and ]P/]y
must be set equal to zero. Doing so leads to

2rxyN21~12r2rx2y!Ny222lxy350, ~51a!

2xyN21~12r2rx2y!mNx222mlx3y50. ~51b!

We multiply Eq.~51a! by mx2, Eq. ~51a! by y2, subtract the
results, and findxyN2(rmx22y2)50, or

y5Arm x. ~52!

~For N50, only the uninteresting casex50, y50 would be
obtained.! If we substitute Eq.~52! in Eq. ~51a!, we obtain
the cubic equation

x313
Ar1Am

Ar~12m!
x21

2112l13~r1m!2rm14Arm

r~12m!2
x

5
~12r!~11Am/r !

r~12m!2
. ~53!

We first consider the special casem51 and then arbitrarym.
Casem51. Because the efficiencyhh,pmax for heat losses

only does not depend onm @see Eq.~2!#, it might be ex-
pected that for the case of combined friction and heat los
hpmax will depend only weakly onm. This expectation will
turn out to be correct, and hence for many purposes it wil
a good approximation to simply setm51.

For m51 the cubic equation, Eq.~53!, reduces to a linea
one,

~2112l13~r11!2r14Ar!x

52~112Ar1r1l!5~12r!~11A1/r !, ~54!

with the solution

x5
12Ar

2Ar@11l/~11Ar !2#
. ~55!

We substitute this result in Eq.~42! and obtain the maximum
power output:

Pmax5
~12Ar !2

4 @11l/~11Ar !2#
P0 . ~56!
1147 Am. J. Phys., Vol. 70, No. 11, November 2002
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From this result, the maximum power for heat losses only
obtained forl50, and is given by

Ph,max5
1
4~12Ar!2 P0 . ~57!

For friction losses only, we use Eqs.~20! and ~29! with
DT250, h ideal512r and Eq.~31! with Ṽi5Vi to obtain

Pf ,max5
R2T2

2 ln2~V2 /V1!

16f dD2
. ~58!

If we useV25V3(t1 /T2)1/(g21) for adiabatic processes, th
second equation of Eq.~35!, Eq. ~45!, and Eq.~47! Pf ,max
becomes

Pf ,max5
~12r!2P0

4l
. ~59!

Figure 3 shows the dependence ofPmax andPf ,max on l for
fixed r; Ph,max also is shown for comparison. For large va
ues ofl, Pmax and Pf ,max agree approximately. Forl→0,
however,Pmax does not converge toPf ,max. The reason is
that in our model of Carnot-like engines with friction loss
only, we assumed that the cycle can be passed throug
arbitrary speed without any temperature gradients; con
quently P→` for f→0 or l→0, respectively, while for
combined heat and friction lossesP is kept finite by the finite
period needed for heat conduction.

From Eq.~40! with Eq. ~52! for m51,

h5
12Ar2Ar @11l/~11Ar !2# x

12Ar x
~11Ar ! ~60!

is obtained. If we substitute Eq.~55!, we find

Fig. 3. Pmax/P0 as a function ofl for friction losses only~curvePf ,max) and
the case of combined friction and heat losses~curvePmax) with r50.2. The
valuePh,max, which is independent ofl, is shown for comparison~dashed
line!. ~The powerP0 defined in the second equation of Eq.~35! is a refer-
ence value that is typical for a specific engine.!
1147E. Rebhan
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hpmax5
11l/~11Ar !2

112l/~11Ar !3
~12Ar !. ~61!

For vanishing friction (l50), Eq. ~61! reduces to Eq.~2!,
that ishpmax5h f ,pmax, in contrast to the behavior ofPpmax.
~The reason is thatt does not enter the thermal contributio
to h but enters that ofP.! If friction dominates~large values
of l), hpmax approaches Eq.~21!. For intermediate values o
l, Eq.~61! interpolates between friction losses only and h
losses only. Figure 4 shows the dependence ofhpmax on the
friction parameterl for the given temperature ratior50.2.
It is seen that at maximum power output, the highest e
ciency is obtained forl50 ~heat losses only!, and the lowest
efficiency is obtained forl→` ~friction losses only!. In all
real engines a situation between these two extreme cases
be found.

For m51 the general relation between efficiency a
power given by Eq.~24! for friction losses only can easily b
generalized to the case of combined friction and heat los
However, a problem is posed by the fact that bothP andh
depend on two variables,x andy, and hence a unique relatio
betweenP andh does not exist. Nevertheless, such a relat
can be established for every curvey5y(x) in the space of
the variablesx andy. In the following a relation of this kind
will be derived for the special curvey5Ar x that results
from Eq. ~52! for m51 and runs through the point of max
mum power output in thex,y plane.

For m51 andy5Ar x, Eq. ~42! leads to

P

P0
5Ar ~12Ar ! x2r @11l/~11Ar !2# x2. ~62!

Equation~62! is a quadratic equation inx with the solution

x5
12Ar

2Ar @11l/~11Ar !2#

3S 16A12
4~P/P0! @11l/~11Ar !2#

~12Ar !2 D .

~63!

With the help of Eq.~56!, the latter can be transformed to

x5
12Ar

2Ar @11l/~11Ar !2#
~16A12P/Pmax !. ~64!

If this result is inserted in Eq.~60!, we obtain after simple
algebraic manipulations:

Fig. 4. Efficiencyhpmax at maximum power output as a function ofl for
r50.2. The highest efficiency,hpmax50.55, is obtained for heat losses on
(l50), the smallest,hpmax50.4, for friction losses only.
1148 Am. J. Phys., Vol. 70, No. 11, November 2002
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h5
@11l/~11Ar !2#~12Ar !~16A12P/Pmax !

16A12P/Pmax ~12Ar !/~11Ar !12l/~11Ar !3
.

~65!

Figure 5 showsh for a fixed value ofr5T1 /T2 as a function
of P/Pmax for several values ofl. Included are the specia
cases of friction and heat losses only. The first, given by
~24!, is obtained from Eq.~65! for large l. The second is
obtained forl50 and has the efficiency

hh5
~12Ar !~16A12P/Ph,max !

16A12P/Ph,max ~12Ar !/~11Ar !
. ~66!

Because according to Eq.~65! h varies only slowly with
P/Pmax nearP5Pmax, an appreciable increase ofh can be
achieved at a power only slightly below its maximum.~For
heat losses only, this result was shown somewhat more
erally in Ref. 2. See also Refs. 3 and 4.!

Arbitrary m. In this case the cubic equation, Eq.~53!,
must be solved. Because its right-hand side is positive w
its left-hand side vanishes forx50 and goes tò for x
→`, there always exists one positive solution. Because
quadratic term is positive, the other two solutions are eit
negative or complex, and becausex5DT1 /T1.0, the posi-
tive solution must be chosen. Forl<(11Arm)2/2, the so-
lution is found to be

x5
1

Ar ~12m!
F 2

A3
~11Arm!

3A12
2l

~11Arm!2
cos

w

3
2~Ar1Am!G , ~67!

with

w5arccos
3A3 ~Ar1Am! l

~11Arm!3@122l/~11Arm!2#3/2
. ~68!

To obtainhpmax, this result must be substituted in the equ
tion resulting from Eq.~40! with y expressed in terms ofx
using Eq.~52!:

Fig. 5. Efficiencyh as a function of the power ratioP/Pmax for the case of
friction losses only, of heat losses only (l50), and for the case of com
bined friction and heat losses withl51. The parameter values arer
5T1 /T250.2 andm51.
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l Ar x
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. ~69!

Figure 6 shows the temperature dependence of the efficie
at maximum power obtained from Eq.~69! with Eq. ~67! for
l50.5, m50.6, andm51.8. As suggested earlier,hpmax de-
pends only weakly onm.

Because the curves in Fig. 6 corresponding to 0,l,`
must be squeezed between the curves forl50 andl5`,
and because the latter ones are exact within the framewo
the present model, they would not be much different eve
the conditions for the validity of the approximation of E
~47! were not satisfied very well.

IV. SUMMARY AND CONCLUSIONS

The efficiency of nonideal Carnot engines was determi
by taking into account the effects of friction and heat co
duction. In the regime between maximum efficiency at z

Fig. 6. Carnot efficiencyh ideal and efficiencyh at maximum power output
as a function of the temperature ratior5T1 /T2 for the case of heat losse
only (l50), friction losses only~lowest curve!, and for the case of com
bined friction and heat losses. The solid curves are form51 and the dotted
curves formÞ1, l50.5. It can be seen that the value ofm does not have
much influence on the results.
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of
if

d
-
o

process speed, and zero efficiency at the largest pos
speed without net energy losses, there exists a speed at w
the power output of the engine becomes maximal. For
case of heat losses only, this result was shown previousl
Ref. 1; the corresponding efficiency was found to
hh,pmax512AT1 /T2. When only friction losses are take
into account,h f ,pmax5(12T1 /T2)/2 was found in this pa-
per. When both effects are taken into account, the efficie
at maximum power output depends on a dimensionless
rameterl* that includes the effects of friction and heat co
duction. An approximation was introduced to obtain analy
cal results for intermediate values ofl* . In addition, an
exact treatment in the framework of the model was d
cussed.

The efficiency can vary between a lower limit,h f ,pmax

5(12T1 /T2)/2, obtained for friction losses only, and a
upper limit, hh,pmax512AT1 /T2, for heat losses only
Within the framework of the model these two limits are e
act. For a temperature drop from 565 to 25 °C, these lim
mean that 0.32,hpmax,0.40. That is, the efficiency ob
tained for heat losses only can be lowered by friction by
to 20% in this case. In reality, friction and heat losses w
always both be present, and hencehpmax will assume a value
in between the two extreme cases. We conclude that to ob
the highest possible efficiency, friction losses should be
duced as much as possible.

The parameterl* depends on rather general engine pro
erties, so it may turn out to be useful for the characterizat
of other thermodynamic engines as well.

In addition to the determination ofhpmax, a general rela-
tion betweenh andP was derived. From this relation, it ca
be seen that only a small reduction ofP belowPmax can lead
to an appreciable increase of the efficiency. For example,
r50.2 andl51, the efficiency is increased by 16% if th
power is lowered by 5%.

a!Electronic mail: rebhan@thphy.uni-duesseldorf.de
1F. L. Curzon and B. Ahlborn, ‘‘Efficiency of a Carnot engine at maximu
power output,’’ Am. J. Phys.43, 22–24~1975!.

2E. Rebhan and B. Ahlborn, ‘‘Frequency dependent performance of a n
ideal Carnot engine,’’ Am. J. Phys.55, 423–428~1987!.

3R. D. Spence and M. J. Harrison, ‘‘Speed dependence of the efficienc
heat engines,’’ Am. J. Phys.53, 890–893~1985!.

4J. Chenet al., ‘‘On the Curzon-Ahlborn efficiency and its connection wit
the efficiencies of real heat engines,’’ Energy Convers. Manage.42, 173–
181 ~2001!.
1149E. Rebhan


