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In nonideal thermodynamic engines the efficiency is well below the Carnot efficiency
n=1-T,/T,. In 1975 an expression for the efficiency of a nonideal Carnot engine with heat losses
was derived, yieldingp=1—T,/T, at maximum power output. In this paper, a corresponding
relation is obtained for more general nonideal Carnot engines. If there are friction losses only, the
resultisyp=(1—T,/T,)/2. If friction and heat losses are both included, the efficiency at maximum
power depends on a dimensionless parametethat takes into account the effects of friction and

heat conduction, and can vary between the values obtained for friction and heat losses separately,
(=T /T)2<9pmax<1—T1/T,. A general relation between efficiency and power output is
established, and it is shown that an appreciable gain in efficiency can be obtained at a power output
only slightly below its maximum. ©2002 American Association of Physics Teachers.
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l. INTRODUCTION is, the temperatur& of the working gas must be below that

In Carnot engines, a working gas receives H@atat an of the heat sourceT,) when it receives heaf,<T,, and
above that of the heat sinkT{) when it rejects heat,

upper temperatur€, from an external heat reservoir at tem- < .

peratureT,, thereby expanding isothermally from its initial T1>T1. The larger the temperature gradient, the faster the
volume V; to a larger volumeV, (step 1. Then the gas is heat is transmitted, the shorter the duration of a full cycle,
adiabatically expanded 5 and cooled to a lower tempera- 2nd the less workV done in one cycle. The average povier

ture T, (step 2. At this temperature it is compressed isother—,?r:c the engLnet |5W/1-£hwherejr is the pirlgd of t?.e f(.:y_(ile. In q
mally to V, while rejecting heaf), to an external heat sink € range between the maximum work done at infinite perio

at temperaturd | (step 3. Finally, it is further compressed ngh P_O. ﬁnd t_he va;}mshlngiwork done for the shortg'st oS-

adiabatically until it reassumes its initial volurivg and tem- sible 7 wit P=0, there exists a temperature gradient at
which the power output assumes a maximum. For the effi-

perature_Tz (step 4. Becausg the work that_ must be ex- ciency at maximum power output, Curzon and Ahlborn de-

pended in the two compression stdsand 4 is less than rived the temperature dependehce

the work gained in the two expansion stéfpsand 2, the net

work done during a full cycle is positive and is given by

W=Q,—Q;. The fraction n=W/Q,=1-Q,/Q, of the T,

heatQ, that is transformed into work defines the efficiency Th,pmax— 1~ \/T:

of the Carnot engine. According to the first and second laws 2

of thermodynamics, the maximum efficiency of an engine

that transfers heat from a heat source at temperdipte a  (The subscriph indicates that only heat losses are taken into

)

heat sink at temperatufg, is given by account). This value is appreciably below the efficiency of an
ideal Carnot engine given in Eql). Equations(1) and(2)
Nidea=1—T1/T>. (1) were applied in Ref. 1 to a coal-fired steam plant working

This value is achieved only by a quasi-static process ipetweenT, =565 °C andT,=25 °C, yielding 7ije,=0.64
which the working gas passes infinitely slowly through a2nd 7n,pmac=0-40. The latter is above the observed effi-
continuous sequence of equilibrium states. C|enc_:y_of77:O.36. In this paper it is s_,hown that the mclgsmn

The last condition shows that Carnot engines are idealize0f friction losses leads to an efficiency that at maximum
tions from which all real thermodynamic engines will more Power output is smaller than the efficiency of K@), and
or less deviate. In this paper more realistic thermodynami¢hus the calculated efficiency may come closer to the effi-
engines, called nonideal Carnot engines, are considered féiencies observed in real engines.
which the rate of the various processes is finite, but which The influence of friction is similar to that of heat conduc-
otherwise resemble Carnot engines as closely as possibion. For infinite period the friction losses are negligibly
That is, the working gas i€l) isothermally and?2) adiabati- small, butP=0. With increasing speed of the process and
cally expanded, and3) isothermally and(4) adiabatically —simultaneously decreasing efficiency, the friction losses be-
compressed as in the Carnot cycle. Thereby, the gas passggme larger until they eat up the entire work done such that
through almost-equilibrium-states to which a uniform pres-againP=0. In between, there is a process velocity at which
sure and a uniform temperature can be ascribed in good aphe power output becomes maximal while the efficiency is
proximation. below its maximum.

In order for the transformation of heat into work by a In Sec. Il a formula for the efficiency at maximum power
Carnot-like engine to proceed at reasonable speed, the heattput is derived for the case of friction losses only. In Sec.
exchange between the heat reservoirs and the working gdld losses due to friction and heat conduction will be treated
cannot be quasi-static. A temperature gradient is needed, thaiimultaneously.
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valve heat source If we substitute Eq(7) into Eqg. (5), we obtain

. W=Q,-Qi—f $ v at. ®
— working gas The time dependence of the functio(t) is assumed to be
SSIR self-similar, that is,
xr—= %
turning points v(t)=v*g(t/7), (9)
of the piston

where g(t/7) is a periodic function oft/~ with period 1;
g(t/7) is considered to be a shape function valid for all fre-
quencies 1 and characteristic of a given engine, andis a

heat sink measure of the speed of the process. The distance covered by
the piston during one cycle isee Fig. 1

D

Fig. 1. Model of a nonideal Carnot engine with friction.

2D= jg lv(t)] dt=v* § |g(t/7)| dt=v* 7 |g(t/7)],

(10)
[I. CARNOT PROCESS WITH FRICTION LOSSES .
ONLY where the bar denotes the time average over one cycle of
period 7, i.e.
A nonideal model engine illustrating the effects to be con- 1 (r 1
sidered is shown in Fig. 1. In the center there is a hollow |g(t/r)|=; f lg(t/7)] dt=f lg(y)| dy. (11
0 0

cylinder filled with a working gas that is completely closed
on its right-hand side. At the left-hand side the rod of apyrthermore,
movable piston extends through a wall closing the cylinder
to the left. The piston can be pressed into the gas transmitting 2 %2 2 %2 T
work to it, and it can be pushed by the gas to the left trans- v(t) dt=v 3€ g°(t/7) dt=v*"r g*(t/7). (12
mitting work to the outside. The cylinder with the working
gas is placed in a larger hollow cylinder that can alternatel
be filled with the(gaseous or liquidstorage material of a 92(t/7) 4D2
heat sink(temperaturel’;) or a heat sourcéemperaturer, f# 2(t) dt= —_— .
>T,). It is assumed here that the heat transfer to and from (lgt/n))* 7
the working gas can proceed at an arbitrary speed withoutor the Carnot-like engine under consideration, the ratio
any temperature gradients, so there are no heat losses. -

Without friction the efficiency of the engine would be the g3(t/7)
ideal efficiency of Eq(1). During the motion of the piston, o= W (14
work is lost due to friction. For a friction force with linear gitir
velocity dependence, the total force acting on the piston is is a fixed parameter. From Ed8), (13), and(14), we obtain

F=pA-—fx, &) W=0,- 0, 4f5D2_
.

))f we substitute forn* from Eq. (10), we obtain

(13

(15
wherex is the displacement of the pistax(t) is its velocity,
p is the pressure exerted on the piston by the working Ajas, According to Eq.(15), the powerP =W/ r of the engine is
is the piston area, anfis the friction coefficient. During a )
Q,—Q; 4fsD

displacementlx, with v=x anddV=A dx, the work per- p= , (16)
formed by the piston is T 72

dW=F dx=(pA—-fx) dx=p dV-fv?(t) dt, (4  andits efficiency is
and the work done during a full cycle is W Q—Qy 4fsD? an

, 77 Q, Q2 Q2
W= % p dv—i 35 v(t) dt ®) For given values of); andQ, the powerP is a function of

We may assume that, for the proper choice of the friction” only. Between the shortest possible cycle period with non-

coefficient, fu2(t) is an averaged rate for all friction losses, N€gativeP and r=c«, P has a maximum, the location of
including others than the ones caused by friction between th&hich is determined by
piston and the cylinder wall. According to the first law of dP(7) L QQ N 8fsD2 L

thermodynamics, for a complete cycle, — , (18
d’T 7-2 7'3
0= 3€ du= % Q- § pdv, 6)  and is given by
and hence 8fsD?
= . 19
T 49
3€ p dv= i; 0Q=Q>~ Q1. @) The maximum power obtained for this period is
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(2-Q)* _ Q7igea
16fsD?  16f5D?’

(20

Pf,max:

where nigea= 1 — Q1 /Q, was used(The subscripf indicates
that only friction losses are taken into accourfior the pe-
riod in Eq.(19) corresponding to maximum power, the use of
Eqg. (17) with Eq. (1) gives

1 Q1| 7ideal
77f,pmax_§ l_Q_z _T

Like the Curzon—Ahlborn efficiency of EqR), it is indepen-

(21)

dent of all machine parameters, and, as expected, it is smalle

than the ideal efficiency of Ed1).
From Eqgs.(16) and(17), a general relation betweepand
P can be derived. For this purpose, we first solve @) for

T, yielding
QZ—Ql( 16f 5D2P )
- 1= \/1- ——— |. (22)
P (Q2—Qy)?

We then use Q,— Q4)/ Q5= 7igeas @nd EQ.(20) to obtain

Q27ideal ( P
=———|1x\/1— . 23
2P Pf,max ( )
Becausen=W/Q,=P7/Q,, it follows that
i P
= Tideal ( 1+4/1— ) . (24)
Pf,max

The function n¢(P/P¢ may has two branches because, ac-
cording to Eq.(16), every power outpuP# P; .« Can be

pﬂ

-V

Vi

Fig. 2. pV diagram for a nonideal Carnot process with heat losses. The
working gas receives the he@, on an isotherml ,= constant somewhat
below the temperatur&, of the upper reservoir and rejects the heat on an
isotherm T, = constant somewhat above the temperaflifeof the lower
reservoir.A,3 and A4, are adiabatic curves. The wokl done during one
cycle is given by the dashed area in a nonideal process and by the shaded
area in an ideal process.

3

JdV
4

Vg

3 ~
lef p dV=RT,;
4 4

and

Q ~ JZdV ( AT \72
=RT,| —=R (T,—AT,)In=.
2 2],V 2 2 va

(29

It will now be assumed that the Carnot process undergone by

achieved for a longer and a shorter period, corresponding tthe working gas between the temperatifgsand T, is an
a higher and a lower efficiency, respectively. Figure 5 showsdeal one. From this assumption and the second law of ther-

this function for the value 0.2 of the ratio
Ty

P=T, (25

[lI. CARNOT PROCESS WITH COMBINED
FRICTION AND HEAT LOSSES

In a nonideal Carnot engine with heat losses only, the

working gas does not receive the h€at at the temperature

modynamics, it follows that

%_% @
T, To

Consequently,
v, % a
V. V'

T, of the heat source, but at a temperature somewhat belo@ccording to Eqgs(28) and (29). For the heat transfer be-

this value on the isotherm
’:I,-ZZ T2_ ATZ
with

AT,>0. (26)

tween the heat reservoirs and the working gas, Fourier’s law

of heat conduction leads @(t) ~AT, whereQ is the rate of
heat transfer. Equivalently,

leatl AT]_, szﬂtz ATz, (32)

wheret, andt, are the total times needed for the heat trans-

The heatQ, is not rejected from the gas at the temperaturefer, and where X and 1 are the thermal resistances be-
T, of the heat sink, but at a temperature somewhat above difveen the working gas and the heat sink or the heat source

the isotherm
Ti=T;+AT,
with
AT,>0. (27

Figure 2 shows @V diagram of the nonideal process under
consideration. On the two isothermdt)=dQ— pdV=0, and
hence
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and the working gas, respectively. The engine can be con-
structed in such a way that andt, are fixed fractions of the
periodr. Thatis,t;=c,7andt,=c,7, with the consequence

thatt,+t,=(c,+c,) 7 or, from Eq.(32),

Q; Q,
CYAT]_ ﬁATz

(33

|

T= f(t1+t2)=§(

with é=1/(c,+c,). In the following, we shall use the ab-

breviations

E. Rebhan 1145



AT, AT, s
X= T_l y= T_z (34)
o« b aT, (35)
M B’ 0 g ’
and
N=ux+y+(1—p)xy. (36)

If we use Eqgs(26), (27), (30), and (34)—(36), the result
for 7 in Eq. (33) can be rewritten as

Qe X m) QN
Po [X(1-y) y] Poxy(l-y)’

With this notation the efficiencyy,=(Q,—Q;)/Q, of an
engine with heat losses only is

Q,— Q1 T,+AT; 1+x
= o oA, Tl iy e
Q> 2 2 y

37)

(39)

On the other hand, the intermediate volunvesandV, de-
pend on the temperaturds andT,, respectively. Because
V, is related toV;=V; by an adiabatic curveTV? 1
=constant, wherey is the ratio of the specific heats at con-
stant pressure and constant volume, we h&@g*l

=T,v} ! and

(44)

Furthermore, the volume¥,; and V5 can be expressed in
terms of the piston aredand the length®, andD shown in
Fig. 1, that isV,=AD,, V3=A(D;+D), and

Ve 144
V.-

where EQs.(28), (29), and (31) have been used. We then with

combine Egs.(35—(37) with the relation P,,= %,Q,/7
which follows from Eq.(17) and P,,=W/ 7, and obtain

_ (I-p—px—y)xy
- S .

Ph (39

(45)

If, in addition to heat losses, friction losses are taken intdf we substitute Eq(45) in Eq. (44) and Eq.(44) in Eq. (41),
account, Eqs(16) and(17) must be employed for the power We finally obtain

and the efficiency, respectively. The perieds now deter-
mined by heat conduction and is given by Egj7). With heat
losses included, Eq$17), (29), (31), and(35—(37) lead to
the result

1+x N Xy

=1- - : 40

7 1oy P~ I=y)N (40)
where\ is given by
4afsD?

(41)

A= .
ER?T,LIN?(V,1Vy)

Because the power i§Q,/7, we find using Eqs(37) and
(40) that

_|A=p—px=y)xy A x%y?

P N N

P,. (42)

(No subscript will be used for, andP for the case of com-
bined friction and heat lossés.

Except forV,/V,, all the quantities in\ are fixed ma-

A=

, 1
ER?T,| In(1+d)+ .

(46)

To obtain analytical results, we shall use the approxima-
tion

. 4afsD?
fRZTz |n(l+d)+m |np
This approximation is justified for
I1+d+1l >1I1+X 48
N(1+d)+ =7 In p= =7 In7—, (48)

chine parameters. For a given engine, the turning points of

the piston and its stroke lengih are fixed(see Fig. 1 This

which is satisfied for large values of and/ory and/or for

condition is equivalent to the condition that the minimum small values ofx andy. (Large values ofy lead to steep

volumeV; and the maximum volum¥; have fixed values
V; andVs,
vlzvl,

V3 = V3 . (43)
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adiabatic curves. It is clear from Fig. 2 that for vertical adia-
batic curves, the relatioh~\* becomes exact becau¥g
=V3=V; in this case.

The exact results fo; andP are

E. Rebhan 1146



1+x A* Xy

T 1—y)N| 14+ —— [ 1n =X n(1td)+ ——inp| | “
( —y) +ﬁ nﬁ n(l+ )+ﬁ np
| (A=p—px—y)xy \* x%y?
o N ) Nz-l ! | Lhx In(1+d ! | Fl™ 0
. +m any n(1+ )+m np |

where\*, given by Eq.(47), is a dimensionless parameter. From this result, the maximum power for heat losses only is
Instead of these results, we shall use Ed6) and(42), and  obtained forA=0, and is given by

treat\~\* as a fixed parameter. Note that the two extreme 14 2

cases, heat losses onlyx€0), and friction only {—x), Ph.mac3(1 Vp)? Po. (57)
are not affected by our approximation, and remain exacFor friction losses only, we use Eq&0) and (29) with

within the framework_of the present model. AT,=0, 7igea= 1— p and Eq.(31) with ’\“/i:\/i to obtain
As mentioned previously, between very slow and very fast )

cycle speed, there must be a point of maximum power op- R*TS In*(V,/Vy)

eration. To determine it, the derivative®/dx and dP/dy Pt ma 16f SD2 ' (58)

must be set equal to zero. Doing so leads to
If we useV,=V,(t;/T,)Y~D for adiabatic processes, the

_ 2 (1 2_ _
PXYNE+ (1= p—pX—y)Ny*=2)\xy*=0, (518 gecond equation of Eq35), Eq. (45), and EQ.(47) P; max
—XyNZ+ (1—p—px—y)uNx2—2urx®y=0. (51p becomes
_\2
We multiply Eq.(518 by ux?, Eq.(518 by y?, subtract the P, max:(l p) PO_ (59
results, and finckyN?(pux®—y?)=0, or ' 4\
y= m X (52) Figure 3 shows the dependenceRyf,, and P¢ na 0N A for

_ _ fixed p; P max @lso is shown for comparison. For large val-
(For N=0, only the uninteresting case=0, y=0 would be  yes of\, Py, and P . agree approximately. For—0,
0bta|ned). If we substitute Eq(52) n Eq (513), we obtain howeverlpmax does not converge té’f,max- The reason is

the cubic equation that in our model of Carnot-like engines with friction losses
only, we assumed that the cycle can be passed through at
343 Vot w21 12+ 3(ptp)—puta VPR arb)i/trary speed without any )t/emperature %radients; Co?lse-
Jp(1— ) p(1—u)? quently P—« for f—0 or A—0, respectively, while for
combined heat and friction lossBds kept finite by the finite
_ (1=p)(1+ulp) (53) period needed for heat conduction.
p(1—p)? ' From Eq.(40) with Eq. (52) for u=1,
We first consider the special cage=1 and then arbitrary. 1= Vo= p [1+N(1+p )?] x 14 p 60
Caseu=1. Because the efficiencyy, ymaxfor heat losses = 1—p x ( p) (60

only does not depend op [see Eq.(2)], it might be ex- . i ) i
pected that for the case of combined friction and heat lossed obtained. If we substitute E¢55), we find
7pmax Will depend only weakly onu. This expectation will

turn out to be correct, and hence for many purposes it will be

a good approximation to simply sgt=1. Buax

For =1 the cubic equation, E¢53), reduces to a linear I
one,
(—1+2\+3(p+1)—p+4yp)x

=2(1+2\p+p+N)=(1-p)(1+1p), (54)
with the solution

1_
Ve (55)

ol N (10 )]

We substitute this result in E42) and obtain the maximum

1 2 3 4 5

power output: Fig. 3. Pmax/ P as a function o for friction losses onlycurvePy ) and

the case of combined friction and heat loséasveP,,,,) with p=0.2. The

(1- \/; )2 value Py, max, Which is independent of, is shown for comparisotdashed

max= 0- (56) line). (The powerP, defined in the second equation of Eg5) is a refer-
A[1+N/(1+ \/; )?] ence value that is typical for a specific engjne.
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Fig. 4. Efficiency 7pmax at maximum power output as a function »ffor

p=0.2. The highest efficiencysoma—0.55, is obtained for heat losses only rig 5. Efficiencyy as a function of the power rati®/ P, for the case of

(A=0), the smallestyyma=0.4, for friction losses only. friction losses only, of heat losses onlx£0), and for the case of com-
bined friction and heat losses with=1. The parameter values age
=T,/T,=0.2 andu=1.

1+ N (1+p )2

(1-=p). (6)

Toma N (11 p )
2 [
For vanishing friction £ =0), Eq. (61) reduces to Eq(2), 7= [1+M/(1+ J;) Ja- \/; J(AENV1—P/Pryay) _
that iS 7pmax= 77t pmax IN CONtrast to the behavior & . 1+ V1= P/Pa (1—\p )(1+p )+ 2N (1+p )®
(The reason is that does not enter the thermal contribution (65)

to # but enters that oP.) If friction dominates(large values

of X), 7pmax@pproaches Eq21). For intermediate values of Figure 5 shows; for a fixed value op=T,/T, as a function

\, Eq.(61) interpolates between friction losses only and heabf P/P,,, for several values ok. Included are the special
losses only. Figure 4 shows the dependencegpf,on the — cases of friction and heat losses only. The first, given by Eq.
friction parameten for the given temperature ratip=0.2.  (24), is obtained from Eq(65) for large . The second is

It is seen that at maximum power output, the highest effi-obtained forh =0 and has the efficiency

ciency is obtained fox =0 (heat losses onjyand the lowest

efficiency is obtained foh — (friction losses only. In all (1—p )1+ V1=P/Py, max)

real engines a situation between these two extreme cases will 7n= .
be four?d. 1+ 1= PPy max (1= p )(1+p )

For u=1 the general relation between efficiency and ) ) )
power given by Eq(24) for friction losses only can easily be ~ Because according to E¢65) 7 varies only slowly with
generalized to the case of combined friction and heat losse&/Pmax NearP =P ,,,, an appreciable increase gfcan be
However, a problem is posed by the fact that bBtand  ~ achieved at a power only slightly below its maximu¢®or
depend on two variables,andy, and hence a unique relation heat losses only, this result was shown somewhat more gen-
betweerP and 7 does not exist. Nevertheless, such a relatiorerally in Ref. 2. See also Refs. 3and 4.
can be established for every curye-y(x) in the space of ~ Arbitrary u. In this case the cubic equation, EG3),
the variablesc andy. In the following a relation of this kind Must be solved. Because its right-hand side is positive while
will be derived for the special curvg=1/p x that results ItS left-hand side vanishes for=0 and goes to= for x

from Eq. (52) for =1 and runs through the point of maxi- —*> there always exists one positive solution. Because the
mum power output in the,y plane quadratic term is positive, the other two solutions are either

_ _ negative or complex, and because AT, /T,>0, the posi-
For u=1 andy=p X, EqQ.(42) leads to ) .
" y=1p a. (42 tive solution must be chosen. Faes(1+ \pu)?/2, the so-
lution is found to be

(66)

P
P—O=fp<1—fp>x—p[1+x/(1+&>2]x2. (62)

Equation(62) is a quadratic equation ixwith the solution 1 2
q (62)isaq q X=———— | — (1+\pp)
1-p Vp (1=p) [\3
X:
2\p [L+N(1+p )?] 2\ @
X\ 1= ———=5 cos; —(\Np+ V)|, (67)
2 (1+pu)? 3
x(1+ \/1 4(PIPg) [1+M(1+p )?] ) pu
- (1=+p)? ' with
(63)
With the help of Eq(56), the latter can be transformed to 3V3 (Vp+w) A
@=arccos 3 T (68)
1-\p (L4 Vpu) 1= 2N (1+pp)?]
RN TP VIPN e (1= V1-P/Ppay). (69
pl ( p)7l To obtain 7pmax, this result must be substituted in the equa-
If this result is inserted in Eq60), we obtain after simple tion resulting from Eq(40) with y expressed in terms of
algebraic manipulations: using Eq.(52):
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process speed, and zero efficiency at the largest possible
speed without net energy losses, there exists a speed at which
the power output of the engine becomes maximal. For the
case of heat losses only, this result was shown previously in
Ref. 1; the corresponding efficiency was found to be
8\; . Mh,pmax=1— VT1/T,. When only friction losses are taken
B into account, 7 pmax=(1—T1/T,)/2 was found in this pa-
per. When both effects are taken into account, the efficiency
at maximum power output depends on a dimensionless pa-
rameterA* that includes the effects of friction and heat con-
duction. An approximation was introduced to obtain analyti-
cal results for intermediate values af. In addition, an
exact treatment in the framework of the model was dis-
. , T/T cussed. N o
0 0.5 1 17722 The efficiency can vary between a lower limi; omax
=(1-T,/T,)/2, obtained for friction losses only, and an
Fig. 6. Camot efficiencyyige, and efﬁciencyn at maximum power output upper limit, #;, pma=1— m’ for heat losses only.
as a function of the temperature rapie=T, /T, for the case of heat losses Within the framéwork of the model these two limits are ex-
only (\=0), friction losses onlylowest curvg, and for the case of com- o .
bined friction and heat losses. The solid curves areuferl and the dotted act. For a temperature drop from 565 to 25 °C, these limits
curves foru#1, \=0.5. It can be seen that the value ofdoes not have ~mean that 0.32 7,,,,<0.40. That is, the efficiency ob-
much influence on the results. tained for heat losses only can be lowered by friction by up
to 20% in this case. In reality, friction and heat losses will
always both be present, and hengg,,,will assume a value

0

1+x in between the two extreme cases. We conclude that to obtain
n=1- T P the highest possible efficiency, friction losses should be re-
pp X duced as much as possible.
A \/; X The parametex* depends on rather general engine prop-
— . (69) erties, so it may turn out to be useful for the characterization
(1=Vpu X)[Np+Vutp (1-p) x] of other thermodynamic engines as well.

Figure 6 shows the temperature dependence of the efficiency In addition to the determination of,yay @ general rela-

at maximum power obtained from E@9) with Eq. (67) for  tion betweeny andP was derived. From this relation, it can

A=0.5, u=0.6, andu=1.8. As suggested earlien,n.cde-  be seen that only a small reduction®below P, can lead

pends only weakly on. to an appreciable increase of the efficiency. For example, for
Because the curves in Fig. 6 corresponding toN3<w p=0.2 and\ =1, the efficiency is increased by 16% if the

must be squeezed between the curvesxfer0 and\ =, power is lowered by 5%.

and because the latter ones are exact within the framework of
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